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ZERO-DENSITY COSMOLOGICAL MCDELS AND THEIR
APPLICABILITY TO THE OBSERVED UNLVERSE

By Windsor L. Sherman
Langley Research Center

SUMMARY

A review of relativistic models of the universe and material relating to
the cosmical constant showed that this term is a constant of integration and
should be retained as a necessary term in the field equations of general rela-
tivity. An analysis of the zero-density model universe, a model universe that
neglects density effects but retalns the effect of curvature and the cosmical
constant, showed that closed-form expressions could be obtained for the lumi-
nosity distance and redshift-magnitude relation. It was found that under cer-
tain conditions only small differences exist between the zero-density model
universe and the finite-density model universe, which is physically close to
the observed universe in composition but uniform in structure. It was con-
cluded that under certain conditions the zero~density model universe offers a
valuable tool for the analysils of observational data. The zero-density
redshift-magnitude relation was used with observational data in a least-squares
computing process to calculate new values of the acceleration parameter and the
Hubble parameter. Because of the scarcity and quality of the data, the results
of the calculations were not conclusive.

INTRODUCTION

The discovery of quasi-stellars (ref. 1) has extended earth-bound astro-
nomical observations of cosmological interest to much larger redshifts. The
introduction of orbiting astronomical observatories will permit the observation
of galaxies and quasi-stellars at much larger redshifts and will, because of
the opening of a wider band pass in the electromagnetic spectrum, enable the
astronomer to obtain better apparent magnitudes for galaxies and quasi-stellars.

In model universes based on general relativity, the relationships used by
the cosmologist to analyze observational data have, in the past, been approxi-
mate formulas or exact relationships for the special case of a zero cosmical
constant. This paper examines the use of a zero-density model universe as a
tool for the analysis of observational data. The relationships that connect
theory and observation in a zero-density universe are exact. The strongest
connection between theory and observation is the redshift-magnitude relation
and this relationship for zero-density universes is studied in detail. It is



shown that the redshift-magnitude relation for the zero-density universe is
under certain conditions very useful for the analysis of observational data.

RELATIVISTIC MODELS OF THE UNIVERSE

Relativistic models of the universe are a natural branch from the theory
of general relativity and have been reviewed in detail by Robertson (ref. 2)
and in general by Bondi (ref. 3). The present discussion is confined to uni-
form models of the universe that have density greater than or equal to zero and
pressure greater than zero. (See appendix for definition of symbols.) The
metric for this type of universe is the Robertson-Walker metric and is

2 - 5
ds2 = g2 - R ét) dr® + r=de” + r s;nge agp (1)
¢ 2
1+ &2
It

where ds has the dimensions of time along the line element, ¢ the speed of
light in vacuo, r, 6, ¢ dimensionless coordinates of a point, k the space
curvature constant, and R(t) 1s the scale factor that describes the manner in
which space unfolds with time and has the dimensions of length. This metric
2eq. (1)) was investigated independently by Walker (ref. 4) and Robertson

ref. 5) and was shown by them to hold for all uniform model universes. The
relationship of the space time of experience, as given by equation (l), and the
physical content of space time is provided by the 10 field equations of general

relativity which are

1

where Guy 1s the Einstein-Ricel tensor and G its spur; gLy is the metrical

tensor, Kk 1is a constant and equal to 8nG/é2, A 1s the cosmological con-~
stant, and Tjy 1is the energy tensor which is

_ b P
TH.V = (p + 'CE)V“VV = 0—2 g“v (5)

for a single-stream isotropic fluid. In this equation, p and p are the
density and pressure and V|, the velocity is dx”/as. All the terms in the
field equations (eq. (2)) have now been defined except Ag,, although A is
the cosmical constant introduced by Einstein (ref. 6) in 1917 in a rather arbi-
trary manner, The retention or the elimination of this constant has been the
subject of much controversy over the past decades. (See ref. 3.) The material
presented in references T to 9 shows that the cosmical constant is actually a
constant of integration and should be retained in the field equations. Conse-
quently, this constant was retained in the field equations used in the studies
reported in this paper.
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The substitution of the space-time metric equation (eq. (1)) into the
left-hand side of equation (2) and the energy tensor equation (eq. (3)) into
the right-hand side of equation (2) by means of Dingle's formula (ref. 10) gives
the well-known form of the Einstein field equations that define the cosmologi-
cal problem for a homogeneous universe and are

s D . o
R—. + g_R; + Kp = - }E— + A
2 R 22
(&)
BE _ kcZp - - Kc? + A
2 3 R2 3

These differential equations give those densities and pressures that correspond
to a given function R(t) and the constants k and A. Only those sets of k,
A, and R(t) which give p2Z 0, p 2 O have physical significance and are of
interest. The solution of these equations for R(t) gives information con-
cerning the geometrical history of the universe.

The previous discussion showed that A should be retained in the field
equations; however, the physical meaning of A 1s vague. Substituting for

ﬁz/R from the second into the first of equations (4) gives
R _A  knG 3p
= =48 oy 4 28
R 3 3 (p c2 (5)

As can be seen from equation (5), A can be interpreted as an acceleration
term. When A 1is negative, 1t corresponds to a force tending to slow down the
expansion; when A = 0, only gravitational forces are acting; and when A 1s
positive, it corresponds to a force tending to speed up the expansion.

Like A, Xk can also take on positive, negative, and zero values. In
fact, these equations were derived in such a way that k may be defined as
follows:

k = -1
k =0
k = +1

For k = -1, space time is open and hyperbolic; for k = O, space time is
Fuclidean; and for k = 1, space time is closed and spherical.

As shown by Robertson (ref. 2), equation (4) may be solved by quadrature
when p and p are functions of time. Robertson analyzed these equations and
obtained several families of model universes that are classified by the signs
of k and A. Table I summarizes the results obtained by Robertson for those
universes where energy is conserved and is greater than or equal to zero. The
stationary universes have been omitted.



TABLE I.- FAMILIES OF FINITE-DENSITY MODEL UNIVERSES

Cosmical | Hyperbolic space; Euclidean space; Spherical space;
constant k=-1 k=20 k = +1
A< O Oscillating Oscillating Oscillating
A=0 Expanding T Expanding T Oscillating
Oscillating
A>O Expanding T Expanding T Expanding T
Expanding IT

The general form of the variation of R(t) with time for each of these uni-
verses (expanding I, expanding IT, and oscillating) is shown in figure 1.

The problem is to sort out from the 11 families of universes given in
table I by using observational data, the family that best represents the actual
(observed) universe. After this has been done, the member of the selected
family which represents the actual universe can be determined. As indicated in
table I, the signs of k and A determine the desired family of model uni-
verses, and since the equations have been adjusted so that k has the value
1]l or O, the magnitude of A specifies the exact model in the indicated family.

Equations (4) yield, without integration, interesting information con-
cerning spatial curvature and the cosmical constant when they are evaluated for
the present epoch. In making the evalustion for the present epoch, the pres-
sure term can be considered negligible as it 1s about one-hundredth of the
density term (ref. 11, p. 358). This assumption results in the zero-pressure
A zero subscript is used to denote the present epoch, and by drop-

universe.
ping the pressure term, equations (4) become
ee ) ~
Fo B |k,
Ro Ro? Rg2
(6)
. 2
Ro _ 8“Gpo - _ ke + A
2 2
Ro 2 Ro %D
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YnG (9)

BESE Po = Op

Here H, 1s the Hubble parameter; qo, the acceleration parameter; and o, the
density parameter. For a discussion of the density parameter see reference 12.
The substitution of equations (7), (8), and (9) into equations (6) and solving
for the A and kcg/Ro give

2
A = 3H (06 - 20) (20)
and
2 °
222 = H02(5°o = 9% - l) = 30oHo2 + Hy (11)

where ﬁo = E§E<%j] and is the present rate of change of the Hubble param-

eter. (See ref. 10, pp. 162 and 165.) By equation (11) H, is a constant
when g5 = ~1; that is, when ﬁo = 0 space is spherical and k > 0. However,
there are spherical spaces in which H0 is not a constant and since the pres-
ently accepted value of q, is greater than zero, then Hy exists in the

observed universe. These results come from the field equations (eqs. (6)) when
evaluated for the present epoch and no assumptions have been made with regard

to ﬁo.
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Figure 1l.- Typical variations of R(t) with time for
three basic families of models of universe. Origin
for each family is taken as beginning of expansion.



If oy 4y and Hy can be determined by observation, then by equa-

tions (10) and (11), one of the families of model universes presented in
table I is specified.

Some investigators make the assumption that A = 0 and claim that this
assumption does not affect the generality of the results. If A is set equal
to zero, equation (10) yields an expression for density which is

2
3H,

hnG

9% (12)

Py =
and equation (11) becomes

2 .
keZ _ H02(2qo - l) = 3qoH," + Hy (13)

R2

This equation indicates that H, will be a constant only when g, = -1; thus,
the space is hyperbolic. However, by equation (12) a value of do of -1 means

negative density which 1s contrary to observational evidence. This result indi-
cates that in realistic A = 0 models, Hy must always have a rate of change.

A study of equations (10) to (13) shows that the assumption A = 0 is
highly restrictive. Setting A = 0 restricts the possible families of model
universes to the oscillatory and expanding I type which originate in the singu-
lar state R =0 at t = O. BSecondly, assuming A = O means that by equa-
tion (12), 4o = Oy. This relation tles the acceleration parameter and the

density parameter together. Such a relation should be established only by
observational results and not by an arbitrary assumption. The assumption of

A =0 also rules out zero and negative values of g, because these values
would give negative and zero densities which cannot occur because of the exist-
ence of galaxies.

When A 1is not assumed to be zero, the density appears in the equations
defining A and kcg/RO2 as a parameter, that can be determined by observa-
tion, in defining the admissible sets of k and A for the determination of
model universes. However, when A 1is assumed to be zero, the density (eq. (12))
is a function of q, and H,. If H, is taken as 100 km/sec/Mparsec, g

is 3.75 X 10“29q0, which, depending on the value of gq,, is 60 to 300 times

the measured density of 3.1 X lO_51 g/cc. Even with an uncertainty factor of
10 which Oort (ref. 13) indicated exists for this measurement, the densities
given by equation (12) are still large compared with the measured density. In
order to have densities on the order of the measured ones, q, must be small,
between 0.01 and O.1.

If g, and g, are known, then equations (10) and (11) indicate the
family of model universes that are of interest in the cosmological problem. If
precise values are known for these parameters and for Hp, then a specific
model of the family is specified. Current observational data indicate that og
lies between 0.015 and 1.5 and q, is thought to lie between 0.5 and 2.5.
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When these values are substituted into equations (10) and (11), A is found to
be negative and k is equal to -l. This result indicates (see table I) that
space is hyperbolic and the universe 1s oscillating. If A is arbitrarily set
to zero, the current range of values for g, indicates curvature constants of O

or 1 and the universe is either an expanding I type and the space is Euclidean,
or an oscillating model and the space is spherical. The results for A =0
and A # O are very divergent when it is considered that the same values of
qp Were used in each case.

RELATTONS BETWEEN THEORY AND OBSERVATION

The ability to differentiate between the families of model universes pre-
sented in table I and then between the members of the indicated family is
dependent on the determination of Hp, g5, and do from observational data.

For earth-based telescopes, the most important observables are: (1) apparent
magnitude, (2) redshift, (3) numbers of galaxies, and (4) angular diameter.

As can be seen, there is not a direct connection between these parameters
and those parameters of importance in cosmological theory. One of the tasks
of the theorists is to construct a relation or series of relationships which
connect theory and observation in terms of o5, g, , and Hg. In doing this,

the following relationships have been found to be useful:
(1) The redshift-magnitude relation
(2) The number-count relation
(3) The redshift angular-diameter relation

See reference 11 for examples of the use of these relationships. Both
the redshift-magnitude relation and the count-magnitude relation depend on the
luminosity distance, and the redshift angular-diameter relation depends on the
cosmic distance (ref. 14) which differs from the luminosity distance by a fac-

tor of (l + 6)_1, where © is the redshift of the spectral lines due to the
velocity of recession. Thus, once the expression for the luminosity distance
has been determined, it is relatively easy to derive the subject relations. As
the redshift-magnitude relation presents the strongest connection between obser-

vation and theory, and because of the ease with which the others may be derived
from these distances i1f the methods of reference 10 or reference 15 are fol-

lowed, the remainder of this paper will be primarily concerned with the
redshift-magnitude relation.

The Redshift-Magnitude Relation

There are two forms of the redshift-magnitude relation in use for analysis
of observational data. Both were derived for a uniform universe. The first of
these relations, due to Robertson (ref. 1k), is based on the assumption that
the scale factor is sufficiently regular to be expanded about the conditions
for the present epoch. This form of the redshift-magnitude relation is



m-K =5 log, ﬁ% + 1.086(1 - q, - 0.92 g—°)8 +My -5 (1)
O

For details of the derivation, see reference 10 or 14, In this expression m
is the apparent magnitude; K, the correction for redshift; M,, the rate of
change of absolute magnitude per epoch; M,, the absolute magnitude; and 5 is a
scale factor associated with the definition of absolute magnitude. In the
form stated, equation (lh) contains no effects from the curvature or cosmical
constant. The retention of a &2 in equation (14) would introduce curvature
for the present epoch but, in addition, the third time derivative of the scale

factor for the present epoch would also appear in the coefficient of the 82
term. In light of present data it does not appear that this derivative could
be evaluated. Lastly, this equation is restricted to small values of the

redshift.

The second form of the redshift-magnitude relation was derived by Mattig
(ref. 16) and is

m - K =5 log, Ho;oz[qos + (gqg ~ 1)(‘/1 + 29,8 - 1)] + Mg + A - 5 (15)

In this equation AMy corresponds to the term 1.086<;O.92 %9 5) of equa-

o)
tion (14) and 1s a correction for evolutionary effects in galaxies. Equa-
tion (15) is an exact redshift-magnitude relation for the case A= 0 and a
zero-pressure universe. Because it is an exact expression, equation (15) is
not restricted to small & and contains the effects of curvature and density.
Since the condition that A = O was assumed in the derivation of the equation
and since it was shown that A = 0 1is a highly restrictive assumption and that
A 1is a necessary term in the field equations, equation (15) would not be use-
ful in the analysis of data unless it can be shown from observational results

that A = O.

Derivation of a Redshift-Magnitude Relation for Arbitrary A

The present problem is to derive a redshift-magnitude relation which is
valid for arbitrary values of A and for redshifts out to at least 1. The
basic equation relating magnitudes and distance is

m - K =5 logig Dy +My + &y -5 (16)

where AM, 1is used to represent the term —1.086<é.92 23-5) of equation (1k4).

Robertson (ref. 14) gives the general form of Dj as




D; = Ro(1 + &) S(w) (17)
where S(w) is a function of the radial coordinate r of equation (1).

If S(w) can be expressed as a function of Hp, qg, 0p, and B, then

the substitution of equation (17) into equation (16) gives the redshift-
magnitude relation. The function S(w) can be determined from the metric
(eq. (1)). For the determination of S(w), equation (1) is put in form (see
ref. 10, ch. 8):

2
as2 = 12 - B2 8%° 4 £2(a02 + sin d¢2) (18)
c®Ry2 kt 2
(o] 1 - =_
Ro?

If the coordinates are chosen so that the origin is at the observer, then by
spherical symmetry © and ¢ are constants for any given light ray. The
origin and references are so adjusted that 6 = ¢ = 0., Light travels along a
null geodesic and along a null geodesic ds = O. Equation (18) can now be
written as

dp = ¢ — = (19)

and

t g
w=c Jf ° at . Jf dg (20)
¢ R 0 1/2

(Roe _ kge)

which gives the connection between the time +t and the radial coordinate g/RO

of the events observed from the origin at time to. Equation (20) gives two
expressions for w which are

3
w = L/\ g 75 (20a)
© (R02 - k§2)
and
t
w=c Jf ©at (20b)
£ R



Equation (20a) can be integrated and the general solution is

‘/_-l: sinh~t %ﬁ- (21)
x

The inversion of equation (21) gives the function S(w} and it is

b =

S(w) = & = 2 sinh |k (22)
Ro &
There are three specific solutions of interest for equation (22) that
correspond to the three types of spatial curvature. The following table lists
the specific forms of equation (22) as a function of the space-curvature
constant:

k Type of space S(w)

-1 Hyperbolic sinh w
0 Euclidean w

+1 Spherical sin w

Equation (22) is indeterminant for k = O, The specific solution can

easily be obtained by expanding sinh \|-kw and multiplying through by l/V:E
and then setting k = O.

The integration of equation (20b) is accomplished in the form:

R
w=c JF ° %5 (23)
R RR

With the equation in this form, the second of equations (&) 1s used to eliminate
R and equation (23) becomes

w:cf:" & (24)

PnGp 2 2 L Ag2
Rj——=— R“ ~ ke + £ R
3 >3

As a consequence of equation (4) specialized to the zero pressure uni-

3

R
verse, p = p, E%—. This relation between p and Po when combined with the

8nGp

definition of o, (eq. (9)) permits the term R2 to be written as

10
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R
A, the expression for w finally becomes

Ro
w=c [°— - = A 7z ()
R
Rl/gl:gﬁogc’oRo5 + H02303(5Uo -4 - LR + H02(00 - qo)R%]

. Through the use of equations (10) and (11) to eliminate kc® and

The substitution of R = into equation (25) expresses ® in terms of

1+
the redshift. The final expression for w becomes

o
ot 0 [%0065 + (500 + g, + l>62 + 2(qo +1)3 +jq

which is an elliptic integral that cannot be integrated by simple functions.
The exact form of the redshift-magnitude relation for uniform zero-pressure
model universes with finite density is given by equations (16), (17), and (22)
and 1is

m-K=5 loglo[Ro(l + 5)(-1— sinh \/-_Ew)jl + M, + My - 5 (27)
Tk

where ® 1s given by equation (26).

This form of the redshift-magnitude relation is not easy to use for the
analysis of observational data except when programed for use on a digital com-
puter. 1In addition, little insight is obtained into what is happening when
equation (27) is used on a digital computer. It is interesting to determine
whether the integrand in equation (26) can be approximated by a quadratic, as
was done by Mattig, without the use of highly restrictive assumptions such as
A =0 or that & must be small compared with 1. If this could be done, equa-
tion (26) could then be integrated by simple functions and a simpler, more
workable form of the redshift-magnitude relation would result.

One possible approach to the simplification of equation (26) is to neglect
the terms involving oo. This approach is possible as oy 1is small and ranges

from 0,015 to 0.15 and the terms 50082 and 20085 can be neglected with

respect to (qo + 1)82. The neglecting of o0, constitutes an assumption of

zero density. This approach to a simplification of the redshift-magnitude
relation has been studied concurrently and independently by the author and
G. C. McVittie of the University of Illinois.

11



The Zero-Density Model Universe

The idea of a zero~density universe was investigated by de Sitter in 1917.
In 1932, Robertson (ref. 2) in his review of relativistic model universes dis-
cussed this and other zero density universes, that is, the E = 0 cases. In
the past, zero-density universes were of interest because of the simplifica-
tion of the mathematics introduced by this assumption. The simplifications
permitted solutions of the equations describing the universe for special cases
and were largely of academic interest. However, these solutions were useful
in indicating trends and understanding a theory of the universe based on general
relativity.

The assumption of zero density gives a model universe that 1s a limiting
case of the finite-density model universe. In a zero-density model universe,
mgtter has no effect on the underlying metric and curvature is solely a func-
tion of the geometry of space. Galaxies are test particles which have no
effect on the structure and evolution of the universe. In the observable uni-
verse, galaxies and intergalactic matter give 1t a finite density; thus, the
best representation would be a finite-density model. In this paper the dif-
ferences between finite- and zero-density model universes are examined to
determine whether the zero-density model universe is applicable to the reduc-
tion and analysis of observational data.

When p, 1s assumed to be zero, o, goes to zero, and the equations for
A and k (egs. (10) and (11)) become

2
A = -3H,"q, (28)
2 .
Koo = “HP (1o + 1) = H, (29)
Ro
Equation (29) shows that in the zero-density model universe, the Hubble
parameter is a constant when g, = -1 and space is Euclidean, k = 0. The

type of space in which Hy can be a constant (see eq. (11)) and the condition
that it be a constant in the zero-density model when space is BEuclidean are
two of the important differences between the finite and zero-density models of
the universe.

Inasmuch as the signs of A and k define families of model universes,
it is only when the signs of A and k given by equations (10) and (11) and
(28) and (29) are the same that the zero-density model universe can be used in
place of the finite-density model universe in the analysis of data. Table IT
compares k and A for the zero- and finite-density universes. A study of
the data presented in table II shows that zero-density model universes may be
used as analogues for the finite-density universes only when the following con-
ditions occur in the finite-density model:

12




do > 05 0o < Qg5 305 < (4o + 1)
-1 <gy<0; 306 - Q<1 (30)
Qo < =1; not restricted by tabulated information

All other cases listed in the table are excluded because the curvature constant

and/or the cosmical constant do not have the same signs in the finite- and
zero-density universes.

TABLE II.- ZERO- AND NONZERO-DENSITY MODEL UNIVERSES AS A FUNCTION GF 9

Density parameter
Acceleration UO;‘O and, 0o = 0 and g # 0 and go = 0 and
parameter 2 2 2 kel 2
A = 380300 - Go) [ A = =3Ho%%0 | K& = Bo®(300 - a0 - 1) | 25 = Ho(ao + 1)
o o
Op > 4y A> O 306> (9 t1)5 k=1
Qx> 0 0o =qy3 A =0 A<O 300 =g, +1; k=0 k =-1
0o < gp3 A< O 30 < (90 +1); k = -1
300> 1; k=1
9 = O A> 0 A=0 300 =1; k = 0 kK =-1
300< 1; k = -1
N T
36, - 9> 1; k=1
-1< gy <0 A>0 A>0 306 - Qg = 1; k = 0 ko=l
300 ~ a4 < 1; k = -1
qe = -1 A>0 A>0 k=1 J kX =0
go < -1 A>0 A>0 k=1 k=1

When conditions exist for the use of a zero-density model of the universe,
differences will occur in A and Rg for the finite- and zero-density model

universes. Table III compares A, Xk, and Rp for finite- and zero~density
universes.

The differences in A range from approximately 3 percent to more than
18 percent. A larger difference occurred for = 0.5 and o0y = 0.8; how-
ever, in this case the condition 30p0< g5 + 1 eq. (30)) for the use of a

zero~-density model had been violated. The differences in Re varied from
about 4 percent to more than 43 percent and the inadmissible case of qg = 0.5,
oo = 0.8 shows a difference in Rp of about 22 percent. These results indi-
cate a high sensitivity of both A and Rp to the assumption of zero density.
As both A and Rg appear in the equations for the luminosity distance and
redshift~magnitude relation, a careful study is required to determine whether
the differences in A and Ry introduce unacceptably large differences in the

luminosity distance and redshift-magnitude relation.

The results presented in table IIT also show the importance of the
restrictions given by the inequalities (eq. (30)) for the use of zero-density
model universes. When q4 = 0.5 and o, = 0.8, the first of the inequalities

(eq. (30)) was not satisfied and both k and A change sign; therefore, a
zero-density universe cannot be used to analyze a finite-density universe when
qy = 0.5 and gy = 0.8. However, when g, = 2.5 and o, = 0.8, the

13



TABLE IIT.- A, k, AND R, FOR ZERO- AND FINITE-DENSITY MODEL UNIVERSES

i

Aaoiéo - A()'o =0
A for oo of - Agy=0
k ercent, for
“o P e of -
0 0.08| 0.8 0.08 | 0.8
-1 |-1.58 x 1009 | -1.33 | == | 18.80 [=omm-
0.5
1 1.05| =-=-— 150.25
-1 |-7.89 ~7.641 =5.37 3.27 | 9.86
2.5
I [PSUUYEEEEVIVEVEVEV [PIVEVEVENIN JNENDvOvIS, BN

Ro,Uo;éO - Ro, Op=0
Ro for gy of - Ro, 05=0 ;
percent, for
O Of =
0 0.08| 0.8 0.08 0.8
7.56 x 1027 | 8.24 [ == | 8.24 | --om-
9.75 — 22.45
k.95 5.1318.72 | 3.52 43.50

inequality was satisfied and the signs of

k and A remained the same as

those of the finite-density model; thus, the zero-density model could be used

8
%
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| ‘///7
% 2 a4 6 8 1.0

Figure 2.- Differences in mRoHo/c
between finite-density and zero-
density model universes.
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to analyze observational data for
these conditions.

For the analysis of the zero-
density model universe, equation (26)
was written in the form

by f5 ds
" HoR
700 ke (3 1 5)2 1 g
2n 2 o
Ho“Ro

(31)
by setting o5 = O and using equa-
tion (28) to eliminate A. Figure 2
compares wRoHo/c for the finite-
density universe (eq. (26)) and that
for the zero-density universe
(eq. (31)) for qg = 0.5 and 2.5
and o5 = O and 0.08. The differ-
ences between zero- and finite-
density universes are small over the
range of ® considered. For
q, = 0.5, differences between the
two solutions start at & = 0.4, and
for g, = 2.5, the differences start

at & = 0.65. When 3 becomes
greater than 1, the density terms
which are functions of 83 and &2
start to increase and the differ-
ences between the zero- and finite-
density models would become larger.



The good agreement obtalned for wRoHo/c for the finite- and zero-density
model. universes indicates that this quantity i1s relatively insensitive to op
between B O and % = 1l. Systematic calculations showed that for g5 > O

and 0S5 S 1, differences of 2 percent or less in wBOHO/c would occur if
€ 0.075q5(d% - 1) + 0.1 (32)

The next step in obtaining an expression for the luminosity distance in
the zero-density model universe is to integrate equation (31). The expression

¢ = —kc(l + &) was substituted into this equation to obtain
HoR
‘k°(1+6)
d
. & (33)
V_- N=kc £2 - 9
HoRo

which integrates as a log function. Subsequent integration yields

m(l+6)+\/ ke (1 +5)° - a4

HoR H2 2
a):-l_]_og _0.9

V-k J_—c / kP
HoRy HPRGE O

which is the general solution for w. This solution is indeterminate for
4y = -1. The correct specific solution for q, = -1 1is easily obtained by

expanding the logarithm and then multiplying the expansion by L and letting
V-k

k approach zero. A more convenient form of the general solution for w is

the inverse hyperbolic cosine representation which is

1 21 k(1 +8)

W = ——|cosh

c ——
= XN HoRoVao

Figure 3 compares ® for > 0, k =-1 as given by equation (26) for the
19 Q0 f) Yy

(3k)

finlte-density case and by equation (34) for the zero-density case. For
QB > O and k = -1, the specific expression for «w when p, =0 is

+ 1 ’ + 1
® = cosh™T Ega;——(l +8) - cosh™t Ega;—— (35)

and this is the equation actually plotted in figure 4. In figure 4 values of
4, ©of 0.5 and 2.5 and values of odo of O and 0.8 were used. Unlike the
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model unlverses. model universes.

previous case large differences start to show up almost immediately. These
larger differences are caused by the differences in Ro for the zero- and

finite-density universes. (See table III.) Two nearly equal quantities are
being divided by different R, values and larger differences result.

Substitution of equation (34) into equation (22) gives the general solu-
tion for S(w) which is

S(w) = L sinh V-k L {cosn™t Vke(1 + 8) cosh™t “ke (36)

= 1= BoRo Vo oo\l
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After some manipulation, equation (36) reduces to

s(w) = m@(% +1)(1+8)° - qo - (1 + aﬂ (37)

for the general solution of S(w). In the case gy = O, equation (37) becomes

indeterminant. One differentiation of the numerator and denominator with
respect to q, produced the solution for g, = 0. Figure 4 compares S(w)

for finite-density universes; S(w) is obtained by substituting equation (26)
into equation (22) for the finite-density case, and is glven by equation (37)
for the zero-density case. The differences shown in figure 4 are on the order
of those shown in figure 3 for the variable w. The results for o and

S(w) show that large differences exist between the finite- and zero-density
universes. These differences are large enough so that the use of a zero-
density model universe for the analysis of observational data 1s questionable
on the basis of the comparison with the finite-~density universe up to this
point. Fortunately, S(w) does not enter directly into the analysis of
observational data. The function S(w) is used to obtain the luminosity
distance from equation (17) in terms of the redshift and the luminosity dis-
tance is the critical parameter for the analysils of observational data.

The luminosity distance 1s obtalned by substituting equation (37) into
equation (17). This substitution gives

D1=°(:I;_ogo§)_|:\((vqo+1)(1+s)2-qo-(1+5ﬂ (38)

for the luminosity distance in the zero-density universe. This 1s a general
solution for D; and like S(w) 1s indeterminate for qo = O. However, the

correct specific solution is obtained by differentiating the numerator and
denominator once with respect to q, and then evaluating D; for g, = O.

The cosmic distance (ref. lh) which is used in the analysis of angular
and isophotal diameters can be obtained from equation (38) by dividing by
1+ 5.

The luminosity distance for the finite-density universe is obtained by
the substitution of equations (22) and (26) in that order into equation (17).
Figure 5 compares the luminosity distances for the finite- and zero-density
model universes, the latter being given by equation (38). The differences
between Dj for the finlte- and zero-density model universes are small and
good agreement is obtained between the finite- and zero-density model universes
out to a & of about 0.6 at qg5 = 0.5 and 0.75 for g, = 2.5. This agree-

ment is somewhat fortuitous because large differences introduced when meRo/c

was multiplied by c/HoR0 to obtain w have been eliminated by the multipli-
cation by Ro when D; was obtained from equations (17) and (37). The good

agreement obtained for D; for the finlte-~ and zero-density model universes
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indicates that Dj as given by the

zero-density model can be used for the
janalysis of observational data.

8x10% R

The radical in the expression for
D; (eq. (38)) indicates that there may

be regions where the luminosity dis-
6 = - — tance becomes complex. For any value
° of q, the value of & at which the

radical becomes zero can be found by

S T setting the radicand in egquation (38)
—L equal to zero and solving for &. The
critical value of ©, called 8¢, is
by 4 Va given by
/// 4 qo
3 A A" 8¢ =7 -1 (39)
Gy = 05 %;,’ it QW©b *
2 Zf/ A — and is the boundary between real and
A imaginary square roots in equation (39);
I q:25 thus, it is also the boundary between
| — d real and complex luminosity distances.
pZd In an expanding universe where 3% > O,
e equation (59) imposes no restrictions
o5 - 4 % = lo for 9> 0, 95 =0, 0> qy> -1, and

dp = -1 as the critical value of 3
is either negative or complex in these
Figure 5.- Comparison of luminosity regions. However, for g, < -1 the

e ety oot universes. | radical in equation (39) is positive
and greater than one. This condition
meauns that in the region go < -1, there

are values of & greater than zero at which the luminosity distance becomes
complex; for example, for g, = 2.5, 8¢ = 0.2955. For d greater than 0.2955
the luminosity distance will be complex and for © less than 0.2955 the lumi-
nosity distance will be real. These results indicate that for go < -1,

5 S \,Z;"o'q_?r—l -1 (40)

and equation (40) is a restriction that must be added to the restrictive con-
ditions (eg. (30)).

o7

The redshift-magnitude relation is obtalned by substituting equation (38)
into equation (16). The redshift-magnitude relation for the zero-density model
universe is

m_K=5loglOE£LQU(qo+l)(l+5)2—qo-(l+6ﬂ}+MO+AMO-5 (4+1)

ol
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This redshift-magnitude relation is good for all g, provided the argument of
the log term is handled as an indeterminant form when gy = O. Figure 6 com-
pares redshift-magnitude relations for the finite- and zero-density universes.
In these calculations g = 1.5, Hp = 100 km/sec/Mparsec, My = -20.56, and
MM, = 0. Four distinct models are shown; they are o, = 0, 0.08, 0.16, and 0.8.
The curves for o5 = 0, 0.08, and 0.16 fall almost on top of each other. There

are very small differences between these three that are not discernible in fig-
ure 6. With respect to the observable universe, a value of gy of 0.08 cor-

responds to a density about half way between p, = 3.1 X 10~31 ana

P = 3.1 X 10-30 gram per cubic centimeter which is the density range given
by Oort in reference 13. The model with og = 0.16 roughly corresponds to the
upper limit of Oort's range of density. When o5 = 0.8, large differences
occurred and this value of ¢, corresponds to a density of approximately

1.6 x lO"E9 g/cc which is about five times the upper limit of the density
range given by Oort. Even at o, = 0.8, agreement between the zero- and

finite-density models is very good out to log c¢d = 4.8 which corresponds to
a & of about 0.21. The inequality (eq. (33)) indicates, as a function of qg,

a value of o, that will give a difference of 2 percent or less between the
finite- and zero-density model universes at & = 1. For the value of q, used

Ll

/" o= 0, 008, 016
54 /// i

50 Y

46 /// —]
log |
(c8) 42 ///

3.8 —

34

10 12 14 16 18 20 22 24 26
m-K

Figure 6.- Comparison of redshift-magnitude relation for
finite-density and zero-density model universes.
Hy = 100 km/sec/Mparsec; qo = 1.5; My = -20.56;

and MMy = O.
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in preparing figure 6, the inequality (eq. (33)) indicates that for o, =~ 0.16,
the difference between the finite- and zero-density model universes will be

2 percent or less. On the plot little or no differences occur between oo = O
and 0y = 0.16 models; at og = 0.8, large differences occur and o, 1s five

times that given by equation (33).

The results obtained in this section show that a zero-density model uni-
verse is under certain conditions a good anaslogue of a finite-density model
universe and can be used to analyze a universe with finite density. As the
observable universe 1s a finite-density universe, the zero-density model uni-
verse can be used for the analysis of observational data when the following
conditions (see table IV) have been met in the observed universe.

TABLE IV.- CONDITIONS FOR USE OF ZERO-DENSITY MODEL UNIVERSE

FOR THE ANALYSIS OF OBSERVATLONAL DATA

Condition Results

General:
0o € 0.075q5(g0 - 1) + 0.1 Errors of less than 2 percent at & =1

Specific:
o > O 46 > 0o k and A of the observable and
4, + 1> 300 zero~density universes have same
sign

0>gp>-1 1> 305~ 4

< -1 5 < ——EE—— - 1 | Eliminates complex luminosity distances
90 i +

One use of the redshift-magnitude relation is the reduction of observa-
tlional data in a least-squares computing process. In this type of computation,
the constants in the equations are regarded as undetermined. The least-squares
process then seeks to determine the best values of these constants from observa-
tional data. In the exact form of the redshift-magnitude relation, there are
three such constants, gq,, Hp, and oy. However, in the zero-density redshift-

magnitude relation (eq. (41)) only two constants, Ho and gq,, are available.
How the values of Ho and g, are affected by this third undetermined con-

stant in fitting observational data must be determined. Most important, the
loss of o0y as a curve-fitting parameter prevents a better determination of

the density of the universe, inasmuch as the effect of density is contained in
the observational data.

20



rSrEme,

Other Results From Zero-Density Model

In model universes the second of equations (4) can be integrated to obtain

to - t.

scale factor R.

is
B2 me? A
R rR= 3

The inversion of the solution for t5 ~ t glves the solution for the
In the zero-density model universe the second of equations (k&)

(42)

This equation when solved for dt and when equations (28) and (29) are used to

eliminate A and k Dbecomes

dR

dt = I

Ho[Ro2(qo +1) - R

and

T (43)

Ho(to - t) = jjo —

[Rog(;; + -1) - qORE]

The integration of equa-
tion (4L) gives the general expres-
sion for t5 ~ t which is

= 1 -1 R,/ %
%(to—t)—E—(cosj_gqo"‘l

- cos’lya;gg—ij> (45)

tog -t
for the zero-density universe is com-
pared with t5 - t for a finite-
density universe with o5 = 0.08 in
figure 7. When g, = 0.5, the two
solutions showed slight differences
above B = 0.65. For g, = 2.5, no
difference is detectable in figure 7.
The inversion of equation (45) gives
the expression for the scale factor
which is

Holto=1)

Equation (45) which gives

dR
75 (k)

6
5
4 —~
qo=05:y//<f;=oos
—T—r
3 //
// \Ja,=25
L T
: {
9, =0, 008
. /
% 2 4 6 8 10

S
Figure T.- Comparison of Hgy(to ~ t)

for finlte-density end zero-
density model unilverses.
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ty - € -
° cos Bolto ) - e sin fSo{to - ©) (46)
Ho\ao + L Ho~t Vao o™t

Figure 8 compares HLR for finite-density and zero-density universes for

4, > 0o > O. The density parameter for the finite-density universe was taken
to be equal to 0.08. Two values of 9y, 0.5 and 2.5, were considered; in both
cases the lack of good agreement, such as obtained for wHORo/c or D3, is
most noticeable. At g4 = 2.5, the differences are smaller than at g, = 0.5
because at large q, the assumption of zero density produces a smaller effect.

When compared with figure 7, the differences shown in figure 8 must be con-
sidered large. In equation (46) the term before the brackets is c/HOVqO +1

and is, by equation (29), R,. It was previously shown (see table III and the
associated discussion) that Ry 1s

very sensitive to oy and large dif-
ferences occur between the o5 =0
and oo £ 0 values of Ry, when

81 Hy and g, are held constant. The

R =

9x1078

differences shown in figure 8 reflect
. these differences in Rg. The dif-

7 " ferences do not occur in figure 7
because the ratio R/Ro appears in

7 % 05 equation (45) rather than Ry by
S / ¢ =008 itself. The ratio R/R; is equal to
(1 +8)-1 vwhich is the same in both
- . finite- and zero-density universes.

\\\\\ % =0 \\\ N\ Extensive calculations with the
=0 > AN digital computer showed that inequal-
a4— NS i ity (eq. (33)) when met insures that
NVaR TN i the differences between the zero-

' and finite-density model universes

3 \\\ will be 2 percent or less at & =1
when referred to the finite-density
solutions.

These results show that for the
analysis and reduction of observa-
A ‘ tional dats, the zero-density model
can be used for time analysis. How-
ever, because of the large differ-
ences that occur in R between the
e (e ) finite~ and zero-density models, the
o use of a zero-density model to deter-
mine a scale factor for the observ-
“g}‘ii gimiiﬁiﬁiﬁ? Zﬁdsiiii-iiﬁ‘;iiy ! able universe appears at best to be
model universes. highly questionable.

% S 2 3 a 5
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There is one other relation connecting theory and observation that may
become important. This is the previously mentioned count-magnitude relation
(see ref,10). This relationship has not been too useful because the number of
galaxies observed at great distances was not sufficient to give a significant
distribution. The use of large telescopes in orbit around the earth to record
distant galaxies may produce sufficient information so that this relation would
give significant correlation between observation and theory.

The count-magnitude relation is

o -5 LS e

where N(m) is the number of galaxies equal to or brighter than a given magni-
tude, n the number of galaxies per unit volume, and Q is the number of
square degrees in the celestial sphere. For the zero-density model this expres-

sion integrates to

3
21nRy
(-x)Q
A study of this expression, based on the analysis of w and S(w), indicates

that there would be considerable differences between the count-magnitude rela-
tion for p, = 0 and for p, # 0, the more physically correct finite-density

N(m) =

(sinh V-ko cosh V=kw - \/Iw)

model universe. For this reason a count-magnitude relation for the zero-
density universe has not been reported in detail.

Calculations With Redshift-Magnitude Relation

In the previous section 1t was shown that under certain conditions the
redshift-magnitude relation for the zero-~density universe can be used for the
analysis of observational data. The redshift-magnitude relation (eq. (%1)) is
compared with other redshift-magnitude relations and the sensitivity to qg 1is
investigated.

Figure 9 shows the effects of q, on the redshift-magnitude relation

(eq. (41)), that is, the separation of the curves for different qy. This

separation is important inasmuch as the magnitude of separation will indicate
how far observations mst be extended in order to obtain data so that a model
of the universe will be defined without question. The separation of the curves
for different gy 1s so poor out to a redshift of 1 that differences are hard

to judge on the figure. Analysis of the data showed that at & = O.h6, the
present limit of observation for galaxies, the curves for gqg = 0.5 and

o = 1.0 were separated by 0.1l magnitude and the curves for gqg = 2.0 and
Qn = 2.5 by 0.08 magnitude. At B = 1 +the differences were 0.15 magnitude
and 0.09 magnitude, respectively. (Quasi-stellars with confirmed redshifts of
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Figure 9.- Effect of varying g, on zero-density redshift-
magnitude relation (eq. (41)). q  teken in’steps of
0.5; Ho = 100 km/sec/Mparsec; My = -20.56; and AMg =

0.545 have been observed and are reported in ref. 17.) It can be concluded
that if this form of the redshift-magnitude relation represents the relation
between the redshift and apparent magnitude in the observed universe, then
observations must be extended to redshifts considerably larger than one before
a model of the universe can be established.

The next step 1s to learn whether the zero-density redshift-magnitude
relation (eq. (41)) is a significant improvement over other such relationships
that are in use. Figure 10 compares the zero-density redshift-magnitude rela—

tion with the approximate redshift-magnitude relation (eq. (14)) when M, =
The difference in magnitude between these equations Am was obtained by sub—

tracting equation (14) from equation (41).

=5 log {l + 0 g 1)(1 +8)° - (1 + aﬂ} - 1.086(1 - )8

The differences range from about 0.005 magnitude at & = 0.1, g = 0.5 to
1.86 magnitudes at & =1, gy = 2.5. The difference at & = 0.46, the redshift
of the galaxy 3(C295, ranges from 0.065 magnitude at g4 = 0.5 to 0.7 magni-
tude at gy = 2.5. Equation (41) was expanded to see whether the expansion
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would show where the differences were arising. The expanded form of equa-
tion (41) is

m-K =5 logy, = + 1.086(1 - q5)5 + O.2715(5q02 + 6qg - 1)52 + My + AMg - 5

o (¥7)

2
subject to the restriction that 1- 84 + 1)82 < l. Comparison
90)5 * %l% 5

with equation (14) shows that the differences occur in 62, the higher order
terms that have been neglected in equation (47). Since curvature and the
effect of cosmical constance do not appear until the 52 and higher order
terms are retained in the expansion, the differences shown in figure 10 are a
function of these parameters.

A similar comparison was made
between equation (41) and equa-
tion (15), Mattig's form of the 25
redshift-magnitude relation for 1.8 /

A = 0, and was used by Sandage
(ref. 11) to analyze observational
results. The difference Am shown 1.6 /

%

in figure 11 was obtained by sub-
tracting equation (15) from equa-

tion (41). 14 //

20

Am=5 log{l‘;oaﬂ(l+ qo)(l+6)2- a 12 /

1 1.0 15
- (1+6)J} -5 log{q—og[qoa Am /

+ (a0-2) (VI + 2005 - )]}

In this case Am ranges from about

0.01 magnitude at & = 0.1, qg = 0.5 4 ////// e
to 0.865 magnitude at 8 = 1.0, v .
do = 2.5. The expanded form of equa- /
2 e
tion (15) is /// | o
K = 1 cd + 1.086(1 )8 %’//’///’
m - K =5 logo g+ 1.086(1 - oo o 4 . e e
o s
+ 0'2715(5% + l) (qo - 1)6 Figure 10.- Difference, as an incremental
magnitude, introduced by use of equa-
+ M, + AM, - 5 (48) tion (14) instead of equation (41).



- - i . This relationship differs from the

10 of the logarithm in equation (15).
The terms of the order of 65 con-

74/ expansion given by Mattig in refer-

8 AN I A R N 20 ence 16 because terms on the order
B —- 1.5 of 83 were retained in the

y //i Maclaurin expansion of the argument

Am 4
4 /// o5  tribute the term 0.2715[Fq0(q0 - #X
—t ] to the 82 of the logarithmic
L L] expansion because the common factor
2 Z P ] cd/Ho 1is taken out before the loga-
rithm is expanded. Mattig did not
o | retain the 82 terms in the
o 2 4 6 8 )

Maclaurin series; hence the noted
difference. Comparison with equa-
tion (47) shows again that the dif-

o2

Figure 11.- Difference, as an lncremental ; 5
megnitude, introduced by use of equa- ferences are coming from the &
tion (15) instead of equation (k1). and higher order terms. Since equa-

tion (48) includes the effects of

curvature and density but not the
cosmical constant, the differences are due to the neglect of density in equa-
tion (47) and the neglect of A in equation (48). There are no A = 0 models
in the zero-density approximation that can be used for the analysis of data as
these models occur for gq, = 0 and are not admissible. (See table II.) These

results show the difference that is introduced when A 1is assumed to be zero
and the present indications are that A 1s not zero in the observable universe.

The redshift-magnitude relation (eq. (%41)) was used in a computing program
to determine H, and gqg from observational data. In this computing program

the method of differential corrections (ref. 18) was used in a least-squares
sense, that is, the sum of the squares of the residuals was minimized. The
residuals were the differences between the corrected observed magnitudes and
the computed magnitudes. The program locked for those values of H, and qq

that minimized the sum of the squares of the residuals.

No limitation was placed on the sign and magnitude of dq- In the case of

Ho, because the observable universe is expanding and Hg must be positive, a
stop was put in the computing program that would discontinue the computation

if Hy ©Dbecame negative. The data used for this computation are presented in
table V. Each data group was run with AM, # 0 and AM; = 0. When AMg # O,
it was set equal to MbS/HO, Mo = 0.3 magnitude per lO9 years. (See ref. 19.)
The S/HO part of the AM, term is the first approximation to to - t. Equa-
tion (44) shows that to - t 1is a function of Hg; consequently, when AMy has
a finite value, its partial derivative B(AMO»/BHO was included in the least-
squares computation. The AMy term accounts for evolutionary effects in
galaxies and was included in this study in order to determine whether it has a
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significant effect on g5 and Hgy. The simple first term of the expansion

for to -t (eq. (14)) was used instead of equation (45) because it was felt
that in the present methods for determining M,, the errors present did not war-
rant the more exact formulation of tg - t and the approximate form of AM, is

more flexible and easier to use in the least-squares computation.

The data used in the least-squares computation are presented in table V.
There are six groups of data presented and with the cited references this table
is self-explanatory except for data group VI. Data group VI is a selected set
of points from data groups I to ITII. These points were selected so that me

always decreased, in the sense of magnitude, with increasing . The initial
results of the least-squares computing program using these data are presented in
table VI. These results were included in this paper in order to show possible
values of q, and Hy when the zero-density model 1s used for the analysis of

observational data.

Three sets of data are presented in this table: AMy = O, evolutionary
effects not present; AMg # 0, evolutionary effects present; and the last where
evolutionary effects were taken into account only when the redshift was greater
than 0.2. The results obtained with these data are far too inconsistent to
draw any specific conclusions; however, there are some interesting indications.
The first and most important is that the problem of evolution must be resolved
since when evolutionary effects were present the qg values changed sign for

50 percent or more of the data groups. Secondly, to cut off evolution at

® = 0.2, or less, is probably not correct because of the effect produced by one
point at & = 0.202 in data groups I and III. The general inconsistency of the
result indicates that a larger number of more accurate data points are needed

at all values of the redshift. The root mean square of the residuals, which is
really root-mean-square magnitude error, is too large, even in the best case,

to be able to pick an exact model of the universe based on equation (41).
Lastly, qo is much more sensitive to observational data than Ho. This sen-

sitivity occurs because gy affects the characteristics of the curve and H,

plays the role of a scale factor. The values of g, when positive are in
general much larger than those usually quoted in current literature. This dis-
crepancy is thought to arise from the fact that, as far as can be determined,
an equation like equation (15) has heretofore been used to determine qg

whereas in this case equation (41) which is a much better formulation of the
redshift-magnitude relation was used.

Data group IT always gave the smallest root mean square. Whether this is
an indication that these data are good and the values of Hy and g, deter-
mined from the data are the most likely or whether the low root mean square
occurred because of the sparseness of the data, is a question that cannot now
be answered with certainty. The value of gqo 1is very sensitive to the quantity
of data. For instance, with AMy = O, the deletion of the seventh cluster in
data group I changed g, from 2.24 to 1.79. To answer the propounded question,
it appears that the low root mean square associated with the results of data
group 1T can probably be attributed to its sparseness.
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TABLE V.- DATA USED IN LEAST-SQUARES COMPUTATION

[Position is given for 1950.0]

Position 3 e my Position ) I me I my. Position I B I me I m.
Data group I (ref. 19} Data group III (ref. 20) Data group V
Virgo 0.004 9.16 1257 + 2812 | 0.022 13.5 1257 + 2812 0.022 13.5
0316 + 4121 .018 | 12.51 0106 - 1536 .053 15.00 0106 - 1536 .053 15.00
1257 + 2812 022 | 12.84 1024 + 1039 .065 16.00 1024 + 1039 .065 16.00
1603 + 1755 .036 | 1k.12 1520 + 2754 .072 15.6 1520 + 2754 .072 15.6
2308 + 0720 L0h3 | 14,78 0705 + 3506 .078 15.4 o705 + 3506 .078 15.4
2322 + 1425 WOk | 15.04 0348 + 0613 .085 17.7 0348 + 0613 .085 17.7
1145 + 5559 .052 | 15.71 1513 + 0433 . 094 16.0 1513 + Ok33 .09k 16.0
0106 - 1536 .053 | 15.21 1431 + 3146 L1301 17.0 1431 + 31k6 .131 17.0
1024 + 1039 .065 | 15.88 1055 + 5702 .13k 17.0 1055 + 5702 L13h 17.0
1239 + 1852 .072 | 15.22 2253 + 2341 143 17.1 2553 + 2341 143 17.1
1520 + 2754 .072 | 15.93 1534 + 3749 .153 17.0 1534 + 3749 .153 17.0
0705 + 3506 078 | 16.26 0025 + 22235 .159 17.7 0025 + 2225 -159 17.7
1431 + 3146 LA31 | 17.31 0138 + 1840 173 17.9 0138 + 1840 W73 17.9
1055 + 5702 L334 | 17.31 1309 -~ 0105 175 17.6 1309 - 0105 175 17.6
0025 + 2223 .159 | 17.39 1304 + 3110 .183 17.7 1304 + 3110 .183 17.7
0138 + 1840 LA73 | 17.16 0925 + 20kk .192 17.7 0925 + 2044 .192 17.7
0925 + 20hk .192 | 17.54 1253 + Whoo .198 17.7 1253 + hhoo .198 17.7
0855 + 0321 .202 | 17.84 0855 + 0321 202 17.7 0855 + 0321 .202 17.7
. 002k + 1654 .29 18.7
Data group IT (ref. 12) Data group IV 1448 + 2617 .35 18.5
- 1410 + 5224 Rirh 19.3

Virgo 0,004 9.2 Virgo 0.004 9.16
1257 + 2812 022 | 12,8 0316 + 4121 .018 | 12.51 Data group VI**
1520 + 2754 .072 | 15.6 1257 + 2812 .022 | 12.8h
1055 + 5702 L13h | 16.9 1603 + 1755 .036 | 1hk.12 Virgo 0.004 9.16
0925 + 2044 .192 | 17.4 2308 + 0720 LOb3 | 14,78 0316 + hi21 .018 | 12.51
0024 + 1654 .29 18.7 2322 + 1425 Lok | 15.04 1257 + 2812 .022 | 12.84
1448 + 2617 .35 18.5 1145 + 5559 .052 | 15.71 1603 + 1755 .036 | 1k.12
1410 + 5224 ¥ 11903 O0L06 - 1536 .053 | 15.21 2308 + 0720 L0433 | 1k,78

1024 + 1039 .065 | 15.88 2322 + 1425 Lo | 15.04

1239 + 1852 072 | 15.22 0106 - 1536 .053 | 15.21

1520 + 2754 .072 | 15.93 1024k + 1039 .065 | 15.88

0705 + 3506 078 | 16.26 1520 + 2754 012 | 15.6

1431 + 3146 .131 | 17.31 0705 + 3506 .078 | 16.26

1055 + 5702 L134 | 17.31 1431 + 3146 L1311 | 17.31

0025 + 2223 159 | 17.39 0025 + 2223 .159 | 17.39

0138 + 1840 173 | 17.16 0925 + 204k .192 | 17.54

0925 + 204k .192 | 17.54 1253 + 4ho2 .198 | 17.69

0855 + 0321 .202 | 17.84 0855 + 0321 .202 | 17.84

0024 + 1654 .29 18.7 1448 + 2617 .35 18.5

1448 + 2617 .35 18.5 1410 + 5224 L 19.3

1410 + 5224 R 19.3 30295 46 19.73%**

*0.44 was substituted for 0.46 of the reference as this is value given by Baum (ref. 21) for this cluster.
This group comprises selected list of clusters from data groups I to ITI.
*¥¥p3ded to origlnal and based on Minkowski's observation (ref. 22) corrected to photographic magnitudes and

corrected for redshift.




TABLE VI.- INITIAL RESULTS FROM LEAST-SQUARES COMPUTATION FOR H, AND g,

MM, =0 MMy # 0 AM?*f 0
Data
group Root Root Root
Ho 90 mean Ho %% mean Ho 45 mean
square square square

I 4.0 x 10°38] 2.24 |0.331 |3.98 x 10°28|-0.536|0.3218|k.092 x 10-18|1.106 |0.336

IT [4.54 2.934| .185 |k.65 -.816| .171 |5.012 -9l .227
IIT |3.25 9.1 A37 13.51 1.119| .4k357]3.516 5.45 L2
IV |3.82 L.637| 337 |3.94 -.24h) .311 |4.23 -.1013| .330

V |3.04 12.79 | -4186(3.61 5510 .327 (k.17 4. 55 L3

VI [3.95 h.025| .2812{%.08 -.691t .1k |4.Lk0 -.6355| .2837

L

*In this case AMy applied only to data with a redshift greater than 0.2.

Baslcally, the results show that more and better data are needed to take
even the first steps in resolving the problem of the structure and evolution
of the universe. In addition, it must be determined whether the redshift is
actually a Doppler shift and whether evolution (that is, the time varlation of
the luminosity of a galaxy) is present and, 1f so, its magnitude per epoch.

CONCLUDING REMARKS

A review of the problem of the cosmical constant in the field equations
of general relativity, based on work by McVittie, Einstein, and Weyl, indicated
that the cosmical constant is a constant of integration and should be retained
in the field equations. A brief review of uniform models of the universe
showed that the curvature constant and cosmical constant were sufficient to
determine a model of the universe. These two parameters are functions of the
density parameter, acceleration parameter, and Hubble parameter. These three
parameters are determined from observational data.

A zero-density model of the universe was studied to determine its appli-
cabllity to the analysis of observational data. It was found that under cer-
tain conditions the zero-density model universe would be very useful for the
analysis of observational data. The zero-density model universe redshift-
magnitude relation when used correctly showed smaller differences with respect
t0 a finite-density-universe redshift-magnitude relation than other approaches
to the redshift-magnitude relation that are currently in use.



Least-squares calculations for the Hubble parameter and acceleration
parameter were made with the zero-density model universe redshift-magnitude
relation, but the results were not conclusive because of the quality of the
present magnitude data and the scarcity of data above redshifts of 0.2. When
evolutionary terms were included in the calculation, the model changed; that
1s, the acceleration parameter changed sign. This result indicates a need for
the better understanding of evolutionary effects in galaxies and an increase
in the quantity and quality of data if progress is to be made on the problem
of the structure and evolution of the universe.

Langley Research Center,
National Aeronautics and Space Administration,
Langley Station, Hampton, Va., November 6, 196kL.
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APPENDIX
SYMBOLS USED IN ANALYSIS

The symbols used in the analysis are defined as follows:
speed of light in vacuum
luminosity distance
spur of Einstein-Riceci tensor
Einstein-Ricei tensor

metrical tensor

Hubble parameter, Ro

Ro

present rate of change of Hubble parameter

correction for redshift
space curvature constant

absolute magnitude of equivalent local source

evolutionary correction to M, to account for aging of galaxies as
a function of travel time of light

apparent magnitude

corrected apparent magnitude
red apparent magnitude

number of galaxles equal to or brighter than a given magnitude
number of galaxies per unit volume
pressure

number of square degrees in celestial sphere

Ro

acceleration parameter, -
RoHo2
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R(t)

r,6,¢

Dots over symbols denote derivatives with respect to time.

APPENDIX

present value of scale factor

scale factor having dimensions of length and describing manner in
which space unfolds with time

dimensionless coordinates of a point in metric subspace
function defined by equation (22)

time along line element

energy tensor

time

")
velocity, %g-

coordinate of metric subspace

redshift of spectral lines due to velocity of recession
critical value of B

dummy variable

constant, §g§

c

cosmical constant

metric subspace coordinates
density

present value of density

kG
3Ho2

density parameter, Po

denotes present epoch, that is, present time.
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